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SHORT-CIRCUIT PHENOMENA: HEAT ENERGY DRAINS IN
COMPOSITE CYLINDRICAL SLABS
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Mechanical Engineering Department, Fairleigh Dickinson University, Teaneck, NJ 07666, U.S.A.

(Receired 19 January 1983 and in recised form 4 Apri/1983)

Abstract-A basic theoretical analysis of steady heat flow through laminated cylindrical slabs is carried out to
introduce the concept of short-circuited diffusion phenomena. It is seen in the case of a two-layer slab that
elevated energy drains are a salient characteristicof such phenomena. A limiting case of the solution developed
herein, specifically when the conductivity of the lower slab increases beyond all bounds, is used to resolve the
long-standingdilemma ofdiscontinuous corner temperatures in the case of the heated semi-infinite strip, or the
finite slab. A method to smooth the temperature discontinuities on a physically meaningful basis is developed

in this work.
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FIG. 1. The laminated cylindrical slab with a short-circuit
pathway.

temperatures has not been recognized previously. The
usual case presented most often in the literature and
traditionally in university classrooms is that of the
semi-infinite strip (or the rectangular slab) with
boundary temperatures that are discontinuous at the
corners (e.g.refs.[1; 2; 3, pp. 164,167;4, pp. 115,116;5­
8; 9, p. 286]). On physical grounds, in fact, this situation
cannot occur: the finite temperature differentials at the
corners lead to heat flux singularities. Indeed, it is
proved later in this work, that not only is the heat flux
singular, but that infinite heat power is required to
maintain thermal equilibrium. Of course, this situation
is physically unrealistic.

The case of the semi-infinite heated strip described
here is an extreme example of the short-circuit
phenomena. So that the subsequent discussion ofshort­
circuit phenomena and the ensuing mathematical
development does not obscure a practical motivation
for the work in this paper, it is noted that a limiting case
of the solution for the two-slab model (see Fig. 1)
developed herein, specifically when the conductivity of
the lower slab increases beyond all bounds, is used to
resolve the problem ofthe semi-infinite cylindrical strip
(or the cylindrical slab) in Section 7.

The composite cylindrical slab in Fig. 1shows a more
typical case of the short-circuit phenomena in heat
conduction. It is perhaps appropriate to consider
briefly the shorted electrical circuit, to fix ideas here
about the meaning of the term 'short-circuit'. Webster
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for 0 < r < a, WL < z < TV. (1)

The conditions imposed on the boundaries of the slab
are:

Utilizing the principle of superposition, the formu­
lation given by equations (IH3) is simplified in the next
section.

TL(r, 0) = T;

aoTL(a, z) = 0 }
r for 0 < z < WL,

bounded TL(O, z)

WL < z < TV. (2)

Tu(r, W) = 0

Tu(a, z) = 0 }
for

bounded Tu(O, z)

a2T
L 1 aTL a2T

L--+--+--=0
ar2 r or az2

'

for 0 < r < a, 0 < z < WL,

a2Tu 1 et; a2Tu-+--+--=0
or2 r or az2

'

In accordance with energy considerations, the
following interface equations further constrain the
temperature fields:

1;.(r, Hi) = Tu(r, Wd,

aTL aTu
kLih (r, Wd = kUih (r, Wd· (3)

[10] defines short-circuit as a bypass, or as "a
connection of comparatively low resistance accident­
ally or intentionally made between points on a circuit
between which the resistance is normally much
greater". Thus, the lower slab shown in Fig. 1 is
configured so that a short-circuiting pathway is
generated, radially outward across the lower cylin­
drical surface of the upper slab, when the conductivity
k L of the lower slab becomes large, i.e. in the case when
kJku » 1.The principal direction of heat energy flow,
upward along the axial direction of the upper slab, is
thereby short-circuited in favor of the aforementioned
lateral bypass.

Diffusion through laminated structures is a process
of central importance in a number of fields of wide
diversity; for example, the conduction of heat along
clad nuclear reactor rods [11], or the diffusion of mass
through laminated membranes [12]. Although two­
dimensional heat conduction problems have received
considerable attention recently, e.g.refs.[13, 14],short­
circuiting pathways have not been considered
previously. This situation may stem from the
preponderant emphasis in the literature given to the
development of solutions for temperature distri­
butions, often by approximate methods [3, 11, 13, 15,
16].

Thus, it may be appropriate to underscore here, prior
to the ensuing mathematical development, that the
overall heat power required to maintain the steady
state process, rather than the temperature distribution,
is the key quantity of interest in the short-circuiting
phenomena.

2. FORMULATION OF THE CONDUCTION PROBLEM

WITH A SHORT-CIRCUIT

Asremarked earlier, the laminated slab shown in Fig.
1 is configured so that a short-circuiting pathway is
generated when the conductivity of the lower slab
becomes large. The governing diffusion equations for
the axisymmetric temperature fields TL(r,z)and Tu(r, z),
in the lower and upper cylindrical slabs, respectively,
under steady-state conditions in isotropic solids, are as
follows:

3. ANALYSIS OF THE TWO-LAYER LAMINATED

CYLINDRICAL SLAB

It is well known that the linearity of the Laplace
equation associated with several linear nonhomo­
geneous boundary conditions may be separated into
sets of Laplace equations, each associated with only
one nonhomogeneous condition. Thus, the problem
formulated in the previous section is divided here (see
Fig. 2) into three separate formulations, which are
inter-related through the interface conditions (3).When

z
T=O

ku /"T=O

+
;.r...u...L.L....L...I....L...I4?7. - - - - - - -

FIG.2. Superposition of formulations.
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The solution to the first formul ation shown in Fig . 2 is
one-dimensional and may be written in a straight­
forward manner, thus,

superimposed, the axisymmetric temperature fields
TI(z) and Tk, z),which both pertain to diffusion in the
lower slab, must sum to the temperature distribution
Tdr, z):

where

c, = 2; fa rJo('.:')Jo(Pm':.-) dr, (12b)
a J l(fJm) 0 a a

forO ~ r < a. Ifequations (10)-{12) are substituted into
equations (7), the following series are obtained for the
unknown interface temperature and heat flux:

Thus, the infinite number of quantities A. may be
considered as the coefficients of the interface
temperature and heat flux functions.The values ofthese
coefficients are to be determined so that all of the
conditions on the heat flow through the upper slab are
satisfied, i.e. the conditions on T3(r, z), specifically
equations (6)and (9).It is now advantageous to rewrite
equations (10) in the form ofequations (9) by employing
the following Fourier-Bessel expansion [4, p. 164]:

Jo('n':.-) = I CmJo(Pm':.-)' (12a)
a m =1 a

T2(r) = Hi.Ao+ I ~.Jo(,.':.-),
n=1 a

q2(r) = -kLAo+ f rP.Jo('.:')' (10)
.=1 a

Comparing equations (10) and (8), it is seen that the
coefficients c, and rP. must be related, and specifically to
the undetermined coefficients A., in order that all
conditions are satisfied for heat flow through the lower
slab, namely, the conditions on T2(r, z):

Y. ( lVL )<P. = - -;kLA. cosh Y.7'

for II ~ 1. (11)

where Pm and ,. are roots of the zero and first order
Bessel functions of the first kind [17], J 0 and J I'

respectively. In view of the smooth conditions that are
imposed on the slab surfaces, i.e, equations (2), one can
assume here that each of the interface functions T2(r )
and q2(r) may be written as a Bessel series:

(4)

(7a)

} for lVL < z < w:

Tu(r, lV) = 0

Tu(a, z) = 0

bounded Tu(O, z)

Tu(r, lVJ = T3(r)

aTu-kuiJi" (r, lVL ) = q3(r) (6)

Note that l3(r) and q3(r) are the interface temperature
and heat flux, respectively. These functions arc related
to the corresponding quantities Tir) and q2(r) through
the interface conditions (3) and equation (5), namely

T2(r, 0) = 0

0:2
(a, z) = 0 1

or for 0 < z < lVL,

bounded T2(0, z)

T2(r, lVJ = Tir)

872
-kL iii (r, nu = q2(r)

(
z ) kL

1j(z) = 'Ii 1- lV
L

' ql = H'L 'Ii. (5)

Both the heat flux ql and the temperature T1(z) are
uniform with respect to the radial coordinate r , The
formulations for the second and third problems shown
in Fig. 2 consist ofthe Laplace equations and following
boundary conditions:

k
q3(r) = Hi 'Ii+Q2(r). (7b)

Employing the method of separation of va ria bles,
solutions that satisfy the homogeneous conditions of
equations (6) are seen to have the following form:

T2(r, z) = Aoz+ I A. sinh (1'.':) Jo(Y.:')' (8a)
.=1 a a

°aT2
(r, z) = Ao+ ~ I A.y. cosh (y• .:) Jo('.:')'

z a n= 1 a a
(8b)

~ . h Pm ( r)T3(r, Z) = L.- Bmsm - (Z - lV)J0 Pm-, (9a)
m=1 a a

aT3 1 ~ Pm ( r)-8 (r, z) = - L.- BmPm cosh - (z-lV)Jo Pm- ,
z a m = 1 a a

(9b)

kL'Ii kL <X)

q3(r)= - -kLAo- - I
lVL a m=l

x L~1 A.Cmy. cosh (Y. l:L)}Jo(Pm~} (13)

Note that the Bessel terms of equations (13) have
precisely the same form as those of equations (9);
therefore, the bracketed coefficients of the Bessel series
in equations (13) bear a relationship similar to equation
(11), in order that all of the conditions are satisfied for
flow of heat through the upper slab. If the solution for
the temperature distribution were a primary motiv­
ation, which it is not, a rather intractable infinite
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.08

WU / 3

FIG. 3. The summation in equation (16b).

The analogous heat power expression for one­
dimensional diffusion through composite media is well
known:

(20)

(l6b)

co

'" p-2 =.1
~ II 4-

n=l

(n~) co I (n~)S, - = L p3 tanh Pn- '
a n= 1 n a

where

Summation (20) converges very slowly, indeed.
Employing a PDP-II FORTRAN algorithm, sums
obtained by including 1000,2000,3000 and 4000 terms
of the series arc 0.24990, 0.24995, 0.24997 and 0.24997,
respectively.

Values of S,(JVu/a) were computed for 0 < JVu/a
< 10 and are plotted in Fig. 3 and listed in Table I for
typical values of n~/a. It is noted that the derivation in
this work does not hold precisely when JVJa = 0, e.g.
equation (7b).

One can determine A o from equation (16a), thus

A = (!i) S,(JVu/a)
o JVl Hku/kd(nVa)+s,(n~/a)' (17)

Substituting A o into equation(15) gives the heat power
required to maint ain the temperature gradient 7jacross
the slab:

s, e:u
)

Q'o,.l (kJku)
--=na---
kuT; (JVJa)

x { 1- I + {Wku/kd(JV~a)]/[s,(JVu/a)]} } . (18)

QIOlal' na- = (19)
kuT; 1.0 (kulkd(JVJa)+(JVu/a)"

In view of the foregoing multi-phased mathematical
development, it is corroborative to note here that
equation (18) reduces, as it properly should, to
equation (19)in all legitimate cases ofthe geometric and
thermal parameters; i.e. specifically as n~/a -> 0, or
ku--' oo, or ku-'O, or when both n~/a-.O sirnul­
taneously as n'lJa -> O. In the last oftheselimitingcases,
S,(JVu/a)--. !(T~~/a), which follows from the summation

• Note that the Fourier-Bessel seri es in equations (13) so
modify the constant terms that the interface temperature will
satisfy the boundary condition on the cylindrical surface of the
slab.

number of simultaneous equations for the coefficients
Anmay be developed: the constant terms on the RHS of
equations (13) would first be written as Fourier-Bessel
expansions in terms of Jo[p,.(r/a)]. However, central
emphasis in this work is directed to a determination
both of the heat powerneeded to sustain the steady flow
of energy through the slab and the relation between
elevated heating requirements and the thermal
conductivities of the laminated components.

In this regard, it may be appropriate to recall here
that a salient characteristic of steady state heat
conduction problems is the flow of energy into a
receptive area of the bounding surface of a body, which
then exits, without internal accumulation, through an
expulsive region of the body's surface. Often, the
temperature over the receptive and expulsive regions of
the surface are fixed by overall considerations of the
ongoing energy process. Thus, the key quantity is, from
a practical viewpoint, the heat power needed to sustain
the thermal gradients across the body. It follows
directly from the divergence theorem and Laplace's
equ ation that the heat power across the interface of the
cylinders is preci sely synonomous with this overall heat
power.

In accordance with the foregoing discussion, a
formula is sought for computing the equilibrium heat
power, Q,ol3l:

Qtol3l = f: J:"q3(r)rdr dO = 2n f: rq3(r) dr. (14)

Employing superposition and axial symmetry, i.e.
equation (7b) and also equation (8b), equ ation (14) can
be rewritten in the following form :

2 kLT; . fa
Qtot31 = 1fa m +2n rq 2(r) dr,

L 0

= na2(kL T;-kLAo)- 2n kL f
JVL a n=1

x Ani'n cosh (i'n T:L) J: rJo(i'n~) dr, (IS)

Note that the integral in equation (IS) is zero for all
11~ 1. It is concluded, therefore, that none of the An
terms contribute to the average heat flux on the
interface. In a similar manner, it can be seen that the An
terms do not contribute to the average interface
temperature, JVLAo,e.g. equations (8a) and (13).Thus,it
may be concluded that the average interface
temperature effectively stems from the constant heat
flux terms in equation (13).* The following relation
between these heat flux terms and the average interface
temperature is developed in the Appendix by
considering heat flow in the upper slab:

JVLAo = 1:e~ -kLAo)S.c:
U
)' (16a)



Short-circuit phenomena 1851

(21)

Table I. The summation in equation (16b)

"u s{'~u)a

0 0
0.1 0.02237
0.2 0.03984
0.3 0.05296
0.4 0.06241
0.5 0.06893
0.6 0.07326
0.7 0.07608
0.8 0.07788
0.9 0.07901
1 0.07972
2 0.08087
3 0.0808812
4 0.0808813

a: 0.0808813

4. DISCUSSION AND A COMPARISON fOR THE TWO­

LAYER LAMINATED CYLINDRICAL SLAB

Equation (18) relates the equilibrium heat power to
both the thicknesses and thermal conductivities of the
laminated slab shown in Fig. I. Figurc4, constructed on
the basis ofequation (18), shows elevated heating power

Wu/a·.5

I.

as the conductivity of the underslab increases. It is seen
from Fig. 4 that highly conductive underslabs provide a
very substantive lateral bypass for the short-circuited
flow of heat energy.

To quantify the degree of the short circuit, the heat
power here is compared with the one-dimensional case
in which there cannot be a short-circuited pathway, i.e,
when the cylindrical surfaces in Fig. 1 are entirely
insulated.This comparison, shown in Fig. 5,is obtained
by dividing equation (18) by equation (19):

Q'oUI I +(kJku)(JVu/lIL)

QI-D = 1+[4(kJku)Sr(JVu/a)/(lVJa)]'

Figure 5 shows that for a constant surface temperature
differential 'Ii, the heat power drain ratio increases
sharply with underslab conductivity, and by a factor of
2 or 3 for the value of the parameters selected. The heat
power drain levelsoff,however, above a critical range of
the slab conductivity ratio, kJku. Thus, the short­
circuiting effect is fully established above this range,
and further increases in underslab conductivity have no
appreciable effect.

Figure 5 also shows that lowered underslab
conductivity, i.e. kJku « 1, will stem the drain of heat
power. In fact, as kJku -+ 0, the heat power in the case
having a short-circuit pathway is no larger than the
fully-insulated one-dimensional case. It may be
concluded, therefore, that an underslab of lowered
conductivity acts as a short-circuit plug.

0.5

kL/k u

FIG. 4(a). Non-dimensional heat power vs slab conductivity
ratio.

0.5

kL/ku

FIG. 5(a).Ratio of short-circuited to non-short-circuited heat
power.

3.136

\.8\3
/Wu/ a =.5

°tolal

°,-0

3.136

I .

a 50 roo a 50 roo
kL/ku

FIG.4(b). Non-dimensional heat power vs slab conductivity
ratio.

kL/ku

FIG.5(b).Ratio of short-circuited to non-short-circuited heat
power.
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5. AN EXTREME CASE OF SHORT.CIRCUIT PHENO;\IENA

.S.4.3.2.1

40

30

OIC)

~k
20

'0

E

FIG. 7. The heat power over the interval el,«: x < (l-e)L on
the boundary of the semi-infinite strip.

Q(e) is shown in Fig. 7 for the physically meaningful
range 0 < e ~ 0.5. Clearly, the heat power grows
beyond all bounds as e ... O.

It is obvious now that problems of this type are
extreme cases of the short-circuit phenomena; thus,
smoothing of the boundary discontinuities appears to
be in order. However, the extent of smoothing (i.e. the
value of e in Fig. 8)cannot be inferred from Fig. 7, since
the curve does not asymptotically approach a positive
limit as e increases. To resolve this dilemma, a method
forsmoothing the boundary temperature discontinuity
on a physically meaningful basis isdeveloped in Section
7.

(23)

(22)

(24)

2k 1
q(x) = - ------,,..--­

L sin2(rrIL)x '

Integration over the interval t: ~ (xIL) ~ 1-(eIL) on
the boundary y = 0 gives the heat power, Q(e):

f
L - t L 4

Q(e)= q(x) dx = -k cot (rre).
tL rr

The semi-infinite strip, heated as shown in Fig. 6, has
been considered in the literature as early as the mid­
nineteenth century. It was in 1878 that Fourier's
solution for the temperature distribution was
published, apparently to show an application of the
series that bears his name [2, pp. 131-155]. This same
problem, or the analogous finite rectangular slab, has
been historically presented thereafter in the literature
on heat conduction [3, pp. 164, 167; 4, pp. 1I5, 1I6;
5-7]. What has not been heretofore recognized, how­
ever, is the intrinsically short-circuit nature of these
problems. Indeed, the corner temperature dis­
continuities lead to infinite energy rates, as will be
proved subsequently.

Carslaw and Jaeger [3, p. 164] give a closed form
solution for the temperature field in the semi-infinite
strip (see Fig. 6):

2 (sin (rrIL)x )
T(x, y) = - arctan . h ( I .

n SIn rr L)y

Equation (22) allows an easy derivation of the heat
power. It is a straightforward matter, thereby, to write
the heat flux on the boundary y = 0:

6. SOLUTIO;,\;S FOR ARBITRARY Sl\IOOTHI;,\;G OF THE

BOUNDARY TEMPERATURE DlSCO;,\;TINUITY

Consider the cylindrical slab shown in Fig. 8. In
accordance with the foregoing discussion, the
boundary temperature has been smoothed by a
parabolically-shaped taper. Note, however, that the
smoothing interval ea is as yet arbitrary. The value of e

o
11

\
o
II
f-

h-...-r..,...,.......~...,....,....,...,....,........,..~----x

--n
Wu ~

J,---------\-r-r~~

o
II
f-

FIG. 6. Discontinuous temperature on the boundary of the
semi-infinite strip.

FIG. 8. Smoothed temperature on the boundary of the
cylindrical slab.
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willbe determined in Section 7.The governingdiffusion
equation for the axisymmetric temperature field T(r, z),
under steady-state conditions in an isotropic solid, is:

02T i er 02T
-+--+-=0or2 r or OZ2 '

As mentioned earlier in the analysis of the two-slab
case, solutions for the homogeneous conditions of
equations (26) are seen to ha ve the following form,
where P. are roots of the zero order Bessel function of
the first kind , J 0:

GO P ( r)T(r, z) = L C. sinh ~(Wu-z)Jo P.- . (27)
. ~ 1 a a

for 0 < r < a, 0 < Z < Wu. (25)

Conditions imposed on the boundaries of the slab are:

r

1

1;, for 0 < - < I-e,

T(r, 0) = T.{r) = [1_(r 2/a2)]a r
T, for - ~ I-e,
•[1-(1-e)2)' a

To develop the solution for the temperature field, the
Fourier-Bessel series is obtained for the function T.{r),
in the interval 0 < r <a, by integrating by parts the
usual formula for the coefficients, e.g. ref. [4, p. 163]:

41; GO

T.{r) = [1-(1-e)2] .~I

J2(P.)-(I-e)2J2[p.(I-e)] J (fJ:"') (28)
x P;Ji(P.) 0 • a .

(33)

7. l':ATVRAL S:\IOOTIlIl"G OF TilE

BOUl"DARY TEMPERATURE D1SCO:\,Il':UIIT

The purpose at hand here is not only to render the
heat power Q(e) determinate, but to do so on a
physically meaningful basis. Therefore, one seeks to
relate the smoothed boundary temperature of Fig. 8 to
a situation in which the slab undersurface is maintained
entirely at a con stant temperature 1;, but without a
corner temperature discontinuity. These requirements
are precisely fulfilled by a limiting case of the solution
developed earlier in this work, for the two-layer
laminated slab shown in Fig . 1, when the conductivity
of the lower slab increases beyond all bounds.

Perspective on the relevance of the aforementioned
limiting case (kL -> 00) of the laminated slab may

f: rJo(P.;) dr = ;: J1(P.),

is employed to obtain equation (32). Note that the heat
power Q(e) increases beyond all bounds as e -> O. The
singular nature ofQ(e)is shown in Fig. 9 for two selected
aspect ratios, specifically Wu/a = 1 and 10. To this
point, however, it is noted that the value of e is arbitrary
and, perhaps more significantly, the heat power is
indeterminate.

Integrating equation (31), one obtains the following
heat power equation :

Q(e) = 5: r" rq(r) dr dO

r· 8rrku1;a
= 2rr Jo rq(r) dr = [1-(1-e)2]

~ J2(p.)-(1-e)2J2[p.(1-e)]
x c: (32)

. =1 p;J1(P.) tanh [P.(H~/a)] ,

where the known definite integral

(26)T(r, Wu) = 0,

T(a, z) = 0,

oT
bounded or (0, z).

The remaining non-homogeneous condition of
equations (26) will be satisfied if

41; {J 2<P.)-(1-e)2J2[p.(1-e)]}

C. = [1-(1-e)2] P;Ji(P.) sinh [P.(U~/a)]
(29)

Thus, it is a straightforward matter to write the solution
for the temperature field, and by employing Fourier's
law of heat conduction, the heat flux q(r) on the
boundary z = 0:

ale)

.2

e
FIG. 9. The heat power for arbitrarily smoothed temperalure

on the boundary of the cylindrical slab .
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perhaps be enhanced by considering the case of one­
dimensional steady heat flow through the underslab.
For this case, the relation between the heat flux q and
the thermal gradient (1;- To) across the underslab is
well known:

~ l~
q = n~ (1;- To), or To = 1;- T;" q. (34)

It may be observed from equations (34) that the
temperature field becomes uniform throughout the
underslab volume, i.e, To -+ 1;, for highly conductive
underslabs,i .e.when kL -+ 00. One concludes, therefore,
that both the form and magnitude of the square-wave
boundary temperature 1;, on the lower surface of the
underslab, is in this case transmitted undisturbed to the
upper surface. Thus, it may be argued that a
superconductive underslab will most evenly transmit
the constant form ofthe boundary temperature 1;to the
interface of the composite cylindrical slab shown in
Fig . 1.

In accordance with the foregoing discussion, the
interface temperature of the laminated slab, when kL

-+ 00, will be quite similar to the smoothed boundary
temperature shown in Fig. 8. It is noted in this limiting
case, that the interface temperature is smoothed
physically, hereafter called natural smoothing, by
diffusion of heat flowing through the superconductive
lower slab. Thus, by equating the heat power in each of
the cases just described, both the heat power Q(e)
[equation (32)] and the smoothing function e are
rendered determinate. An exact solution for the heat
power required to sustain steady conduction through
composite slabs is given by equation (18). In the case
when the underslab conductivity is very large, i.e. when
kJku -+ 00, equation (18) reduces, after some mathe­
matical manipulation, to

In view of the preceding remarks, equation (35) fixes the
magnitude of the smoothed heat power. The smoothing
function e(Wula) can now be determined from the
following transcendental equation, obtained by
equating equations (32) and (35):

F(eWu) = 1 I
' a [1-(1-£)2] .=,

(2/P.)} ,(p.)-(1-e)212rP.(I-e)]

x P;1 ,(P.) tanh [P.(n~/a)]

1
32S,(n~/a) = O. (36)

A PDP-ll FORTRAN algorithm based on the secant
method [9, p. 71] was used to obtain the roots e(Wula) of
equation (36).

The errors, which are defined as follows and listed in
Table 2, indicate that the values of e so obtained have
been computed to good engineering accuracy:

percent error = 32S,C:U) IF(e, l:u)1 x 100. (37)

The smoothing function, e(Wula), is plotted in Fig. 10.
Values of the Bessel functions 1 0 , 1" and J 2 were
computed employing a FORTRAN algorithm based
on both series and asymptotic representations,e.g. refs.
[17; 18, p. 139].

8. SUMMARY A1'\D COI\CLUSJOI\S

Both infinite heat flux and infinite heating power
stem from a discontinuous boundary temperature on
contiguous surface regions of a body in thermal .
equilibrium.This situ ation, although unre alist iconly if
the discontinuity is not smoothed, is one of

naku1;
Qtotal = 4S,(Wula)' (35)

Table 2. The smoothing taper e of the temperature
discontinuity on the boundary of the cylindrical slab

lVu Percent
a e error"

0.05 0.01747 0.0008t
0.10 0.03359 0.00014
0.15 0.04830 0.00150
0.20 0.06153 0.00004
0.30 0.08351 0.00014
0.40 0.09972 0.00014
0.50 0.11102 0.00024
0.60 0.11855 0.00038
0.70 0.12344 0.00020
0.80 0.12655 0.000025
1.0 0.12973 0.00015
1.5 0.13155 0.00057
2 0.13171 0.00010

10 0.131727 0.00013
50 0.131727 0.00013

• See equation (37).

.10

e

.05

Wu/a

FIG. 10. Natural smoothing depends on the slab aspect ratio .
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APPEl';D!X

It is a straightforward matter to relate the average
temperature on the upper slab boundary z = IVdsee Fig. 2) to
a uniform heat flux qo imposed on the same boundary. The
form ofthe solution is given by equations (9).Ifqois expanded
in a Fourier-Bessel series, thus

the following values of the coefficients Bm are obtained by a
term by term comparison of equations (AI) and (9b):

2qoa
Bm = - 2 • (A2)

kt:/Vt(Pm) cosh [Pm(lVt:/a)]

The temperature on the boundary then followsby substituting
equation (A2) into equation (9a):

T(r, J~) = 2qoa ~ tanh ?m(lVu/a)] Jo(Pm:')' (A3)
ku m=l PmJt(P"J a

Ifequation (A3)isnow integrated, the desired relation between
average boundary temperature and heat flux qo is obtained:

1 fa f2"TA V = -2 rT(r, J~) dr dO,
na 0 0

(AI)
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considerable practical importance and therefore, is
resolved herein on a physical basis.

It may be argued in the case just described that
realistic smoothing of boundary temperature dis­
continuities should be based on a consideration of the
interaction ofthe energysource with the heated body, in
view of the infinite energy rate which would otherwise
be a mathematical consequence. Precisely this
approach is taken herein. The single-layer slab with
discontinuous corner temperature is extended to a
limiting case of a two-layer laminated slab: the lower
slab may be considered as part of the energy source.

A natural smoothing function E is obtained in this
manner. Thereby, the dilemma ofinfinite energy rate is
resolved in the practical case when contiguous surface
regions of a cylindrical body in thermal equilibrium are
maintained at essentially constant but different
temperatures. The taper of the discontinuity so
obtained represents a lowerbound, because the
superconductive underslab employed most evenly
spreads the heat from the energy source to the slab
interface. Thus, the smoothing will be minimal and is
synonymous with the best approximation to a
boundary temperature ofsquare-wave form that can be
realized under practical conditions.

PHENOMENE DE COURT-CIRCUIT: DRAINAGE DE L'ENERGIE THERMIQUE DANS DES
COUCHES CYLINDRIQUES COMPOSITES

Resume-r-Une analyse theorique de la conduction thermique atravers des couches cylindriques est conduite
pour introduire Ie concept de phenornene de court-circuit de la diffusion. On montre que dans Ie cas d'une
coque adeux couches, des drainages energetiques sont des caracteristiques de ce phenornene. Un cas limite de
solution lorsque la conductivite de la couche la plus faible croit par rapport ace qui I'entoure, est utilise pour
resoudre Iedilemne de la discontinuite des temperatures de coin dans Iecas d'une bande serni-infinieou d'une
plaque tinie. Une methode pour adoucir les discontinuites de temperature est developpee sur la base de

considerations physiques.



1856 H. P. YAGODA

KURZSCHLUSSERSCHEINUNGEN: WARMESTROMPFADE IN GESCHICHTETEN
ZYLINDRISCHEN WANDEN

Zusammenfassung- Es wird eine grundlegende theoretische Untersuchung der stationaren Warmestromung
durch geschichtete zylindrische Wande durchgefiihrt und dabei das Konzept von Kurzschlul3erscheinungen
der Wiirmeleitung eingefuhrt.Irn Faile einer zweischichtigen Wand zeigt es sich, dall Strompfade mit erhiihter
Energiedichte eine hervorspringende Eigenschaft solcher Erscheinungen sind. Eine Grenzbetrachtung der
hierbei entwickelten Losung, insbesondere filr den Fall, dal3 die Leitfiihigkeit der unteren Schicht iiber aIle
Grenzen steigt, dient dazu, das aile Problem unstetiger Ecktemperaturen im FaIle des halbunendlichen
beheizten Streifens oder der endlichen Wand zu liisen. Eine Methode zur Gliittung der Unstetigkeiten der

Temperatur auf einer sinnvoIlen physikalischen Grundlage wird in dieser Arbeit entwickelt.

JIBllEHHJI KOPOTKOrO 3AMblKAHHJI. CTOKH TEnllOBOH 3HEPrHH B
Km.1n03HTHbIX MATEPHAllAX UHllHHJlPH4ECKOH <t>OPMbl

AHHOTa1\HlI-BbIno.lllell TeopeTII'IeCKIli! ananm craunonapnoro rennosoro nOTOKa xepca Ko~m03I1T­

usre xrarepuansr UIIJllIIIJlplI'leCKoi! lj>OP~lbl lLlll nccnenoaaIIIIII IIB.lelllli! nepenoca npn KOPOTKO~I

3a~lbIKallllll. B cnysae JlBYXC.l0i!1I0ro xrarepnana noxasano, 'ITO lLlll TaKIiX IIB.lelllli! xapaxrepen
60.1ee IIIlTellCIIBllbli! CTOK oneprun. npcnensuuti c-ly'lai! nonyxeunoro B pafiore peurenns, B ocofien­
1I0CTII npn yaenuxemm Ten.l0npOBonllocTIi 11IIA.:llerO C.l01l no 6eCKOlle'lIlOCTII, ncnonsayerca lLlll
paapeurenns naBIIO cyutecrayroureii npofinesru a 113.,111'11111 pa3pbIBOB rexmeparyp B yrnossrx
06'laCTIiX uarpeaaexnrx nonyfiecxone-moii nO.10cKIi una nnacrnnsr xonexnux paaxrepoa. Paspafiorau

lj>1I311'1eCKIi ofiocnoaainn.rii xieron crnaxnaanua pa3pbIBOB nenpepstsnocrn rexmeparyp.




