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Abstract—A basic theoretical analysis of steady heat flow through laminated cylindrical slabs is carried out to

introduce the concept of short-circuited diffusion phenomena. It is seen in the case of a two-layer slab that

elevated energy drains are a salient characteristicof such phenomena. A limiting case of the solution developed

herein, specifically when the conductivity of the lower slab increases beyond all bounds, is used to resolve the

long-standingdilemma ofdiscontinuouscorner temperaturesin the case of the heated semi-infinitestrip, or the

finite slab. A method to smooth the temperature discontinuities on a physically meaningful basis is developed
in this work.

NOMENCLATURE
a slab radius
A, B,, C, Fourier-Bessel coefficients
IVU -
Fle,—] the function whose roots define ¢
a
Jo, J1,J2  zero, first, and second order Bessel

functions of the first kind
k thermal conductivity

q normal heat flux component

0(e) steady state heat power for an
arbitrarily smoothed boundary
temperature

Qrotal steady state heat power

0.p one-dimensional steady heat power

r,0,z cylindrical coordinates

the function given by equation (16b)

S(ﬂ)
a

T temperature field
T surface temperature
W thickness of a slab layer
X,y rectangular coordinates.
Greek symbols
B. roots of J,
Pn roots of J,
£ smoothing function: the tapering
interval of a discontinuous boundary
temperature
o O, Fourier—Bessel coefficients.
Subscripts
L lower slab
u upper slab
1,2,3 one of the superimposed solutions.

L. INTRODUCTION

THE INTRINSIC short-circuiting nature of steady heat
flow through bodies with discontinuous boundary

temperatures has not been recognized previously. The
usual case presented most often in the literature and
traditionally in university classrooms is that of the
semi-infinite strip (or the rectangular slab) with
boundary temperatures that are discontinuous at the
corners {e.g. refs. [1; 2; 3, pp. 164, 167; 4, pp. 115, 116; 5-
8;9,p.286]). Onphysical grounds, in fact, this situation
cannot occur: the finite temperature differentials at the
corners lead to heat flux singularities. Indeed, it is
proved later in this work, that not only is the heat flux
singular, but that infinite heat power is required to
maintain thermal equilibrium. Of course, this situation
is physically unrealistic.

The case of the semi-infinite heated strip described
here is an extreme example of the short-circuit
phenomena. Sothat thesubsequent discussion of short-
circuit phenomena and the ensuing mathematical
development does not obscure a practical motivation
for the work in this paper, it is noted that alimiting case
of the solution for the two-slab model (see Fig. 1)
developed herein, specifically when the conductivity of
the lower slab increases beyond all bounds, is used to
resolve the problem of the semi-infinite cylindrical strip
(or the cylindrical slab) in Section 7.

The composite cylindricalslabin Fig. 1 shows a more
typical case of the short-circuit phenomena in heat
conduction. It is perhaps appropriate to consider
briefly the shorted electrical circuit, to fix ideas here
about the meaning of the term ‘short-circuit’, Webster

T= ot\

Ti—/
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Fi1G. 1. The laminated cylindrical slab with a short-circuit
pathway.
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[10] defines short-circuit as a bypass, or as “a
connection of comparatively low resistance accident-
ally or intentionally made between points on a circuit
between which the resistance is normally much
greater”. Thus, the lower slab shown in Fig. 1 is
configured so that a short-circuiting pathway is
generated, radially outward across the lower cylin-
drical surface of the upper slab, when the conductivity
k. of the lower slab becomes large, i.e. in the case when
ki /ky » 1. The principal direction of heat energy flow,
upward along the axial direction of the upper slab, is
thereby short-circuited in favor of the aforementioned
lateral bypass.

Diffusion through laminated structures is a process
of central importance in a number of fields of wide
diversity; for example, the conduction of heat along
clad nuclear reactor rods [11], or the diffusion of mass
through laminated membranes [12]. Although two-
dimensional heat conduction problems have received
considerable attention recently, e.g. refs. [13, 14], short-
circuiting pathways have not been considered
previously. This situation may stem from the
preponderant emphasis in the literature given to the
development of solutions for temperature distri-
butions, often by approximate methods [3, 11, 13, 15,
16].

Thus, it may beappropriate to underscore here, prior
to the ensuing mathematical development, that the
overall heat power required to maintain the steady
state process, rather than the temperature distribution,
is the key quantity of interest in the short-circuiting
phenomena.

2. FORMULATION OF THE CONDUCTION
WITH A SHORT-CIRCUIT

PROBLEM

Asremarked earlier, the laminated slabshown in Fig.
1 is configured so that a short-circuiting pathway is
generated when the conductivity of the lower slab
becomes large. The governing diffusion equations for
the axisymmetric temperature fields Ty (r, z) and Ty(r, 2),
in the lower and upper cylindrical slabs, respectively,
under steady-state conditions in isotropic solids, are as
follows:

H. P. YaGopA

P 105, PT,_
ot " r or 922
for O0<r<a, O<z<¥y,
P, 1% P _
ot r or 2

for O<r<a, Wy<z<W (1)

The conditions imposed on the boundaries of the slab
are:
L(r,0)=T

[
o @2)=0 for 0<z<W,

bounded T, (0, 2)

T, W)=0
Ty(a,2) =0

} for Wy<z<W (2)
bounded T(0, z)

In accordance with energy considerations, the
following interface equations further constrain the
temperature fields:

Ti(r, W) = Ty(r, W),
0T, 0Ty
ko (6 W) = ky= 2 (1, W), 3)

Utilizing the principle of superposition, the formu-
lation given by equations (1)-(3)is simplified in the next
section.

3. ANALYSIS OF THE TWO-LAYER LAMINATED
CYLINDRICAL SLAB

It is well known that the linearity of the Laplace
equation associated with several linear nonhomo-
geneous boundary conditions may be separated into
sets of Laplace equations, each associated with only
one nonhomogeneous condition. Thus, the problem
formulated in the previous section is divided here (see
Fig. 2) into three separate formulations, which are
inter-related through the interface conditions(3). When

kU /“T=0

T I
T4(r)

N1 =0

F1G. 2. Superposition of formulations.



Short-circuit phenomena

superimposed, the axisymmetric temperature fields
Ti(z) and T5(r, z), which both pertain to diffusion in the
lower slab, must sum to the temperature distribution
Ti(r, 2):

T+ To(r, 2) = To(r, 2). @)

The solution to the first formulation shown in Fig. 2 is
one-dimensional and may be written in a straight-
forward manner, thus,

z k
Ti2)=T| 1——}, =_Lr
1(2) < IVL) q4 W, T; &)

Both the heat flux g, and the temperature T;(z) are
uniform with respect to the radial coordinate r. The
formulations for the second and third problems shown
in Fig. 2 consist of the Laplace equations and following
boundary conditions:

Ty(r, 0) =

oT,

_2 (a z)

or for 0<z<I,
bounded Ty(0, z)

T(r, WL) =T

_kL (", W) = q,(r)

TU(r9 ;V) =0

Ta, z) =0
for W <z< W,
bounded Ty(0, z)

Tyr, W) = T(r)

oTy
—ky— > (r, W) = 45(r) (©)

Note that T5(r) and q4(r) are the interface temperature
and heat flux, respectively. These functions are related
to the corresponding quantities T(r) and q,(r) through
the interface conditions (3) and equation (5), namely

I(r) = (), (7a)

q;(r) = T+‘Iz(’) (7b)
Employing the method of separation of variables,
solutions that satisfy the homogeneous conditions of

equations (6) are seen to have the following form:

T, 2) = Aozt 3 4, smh( . )JO( 2) (8a)
n=1
T, 1= z r
2 = A4 = z o —
62 (I’, Z) d 0+ a ,.;1 n'n COSh (Yn a) JO(/n a>1

(8b)
Tyr,z)= 3 B, sinhtm (z—W)JO(ﬂ,,%), (9a)

m=1
1 =
_;mz_:

B,.B,, cosh ﬁ—"‘ (z—W) Jo(ﬂ,,, 1),
a a
(9b)

1
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where f3,, and y, are roots of the zero and first order
Bessel functions of the first kind [17], J, and J,,
respectively. In view of the smooth conditions that are
imposed on the slab surfaces, i.e. equations (2), one can
assume here that each of the interface functions Ty(r)
and ¢q,(r) may be written as a Bessel series:

hd r
Ty(r) = Wido+ Y. &ulo Tars )
n=1

qx(r) = —kp Ao+ Z‘ ¢n‘]0<}’n'c—:)‘ (10
Comparing equations (10) and (8), it is seen that the
coefficients £, and ¢, must be related, and specifically to
the undetermined coefficients A,, in order that all
conditions are satisfied for heat flow through the lower
slab, namely, the conditions on T)(r, z):

W A W;
&, = A, sinh (vn—h), o= — 22k A, cosh <y"—L),
a a a

(1

Thus, the infinite number of quantities 4, may be
considered as the coefficients of the interface
temperature and heat flux functions. The values of these
coefficients are to be determined so that all of the
conditions on the heat flow through the upper slab are
satisfied, ie. the conditions on Ti(r, 2), specifically
equations (6) and (9). It is now advantageous to rewrite
equations(10)in the form of equations(9) by employing
the following Fourier-Bessel expansion [4, p. 164]:

Jo(yn %) =X cho(ﬂm %)
2 e r r
m =m:)‘ J; rJO(?,,;)-]O(pm;) dr, (12b)

for0 < r < a.Ifequations (10)-(12) are substituted into
equations (7), the following series are obtained for the
unknown interface temperature and heat flux:

{f AC.,

x sinh (y,, L;i)} J o(ﬁ,,, £>,

kT, ki, &
Q3(’)=%VL"—I"LAO_7L ;

x{ S A,Ca cosh <»1V—L)} Jo(ﬁmi). 13)
n=1 a a

Note that the Bessel terms of equations (13) have
precisely the same form as those of equations (9);
therefore, the bracketed coefficients of the Bessel series
inequations(13)bear arelationship similar to equation
(11), in order that all of the conditions are satisfied for
flow of heat through the upper slab. If the solution for
the temperature distribution were a primary motiv-
ation, which it is not, a rather intractable infinite

for n>=1.

(12a)

where

0
Wido+ Y,

m=1

Ty() =
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number of simultaneous equations for the coefficients
A, maybedeveloped : the constant terms on the RHS of
equations (13) would first be written as Fourier—Bessel
expansions in terms of J,[B,.(r/a)]l. However, central
emphasis in this work is directed to a determination
both ofthe heat power needed to sustain the steady flow
of energy through the slab and the relation between
elevated heating requirements and the thermal
conductivities of the laminated components.

In this regard, it may be appropriate to recall here
that a salient characteristic of steady state heat
conduction problems is the flow of energy into a
receptive area of the bounding surface of a body, which
then exits, without internal accumulation, through an
expulsive region of the body’s surface. Often, the
temperature over the receptive and expulsive regions of
the surface are fixed by overall considerations of the
ongoing energy process. Thus, the key quantity is, from
a practical viewpoint, the heat power needed to sustain
the thermal gradients across the body. It follows
directly from the divergence theorem and Laplace’s
equation that the heat power across the interface of the
cylindersis precisely synonomous with this overall heat
power.

In accordance with the foregoing discussion, a
formula is sought for computing the equilibrium heat

po‘ver’ Qlolal :

a (*2x - a

Qo = J I qs(")’ dr df =2n f rqs(r) dr. (14)
0 Jo V]

Employing superposition and axial symmetry, ie.

equation (7b) and also equation (8b), equation (14) can

be rewritten in the following form:

kT, a
Qlolal = RGZ# +2TE f rql(r) dl‘,
L o

0

k 2n
2 L
= na| == T—k Ao |— —k, ¥
e (WL i~k o) a "5

W [
x A,y, cosh (y,,j‘) j rJo(y,,g) dr.
[\]

Note that the integral in equation (15) is zero for all
n = 1. It is concluded, therefore, that none of the A4,
terms contribute to the average heat flux on the
interface. In a similar manner, it can be seen that the 4,
terms do not contribute to the average interface
temperature, Wy A,, e.g.equations (8a)and (13). Thus, it
may be concluded that the average interface
temperature effectively stems from the constant heat
flux terms in equation (13).* The following relation
between these heat flux terms and the average interface
temperature is developed in the Appendix by
considering heat flow in the upper slab:

da(k, T, W
Wedo = ;{i’(ﬁ —kLAo)S,(T”), (162)
u L

* Note that the Fourier-Bessel series in equations (13) so
modify the constant terms that the interface temperature will
satisfy the boundary condition on the cylindrical surface of the
slab.

(15)
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where

W ® 1 W,
)54 2) oo

One can determine A, from equation (16a), thus
e < T ) S(Wol)
°\I) ko/k)(We/a) + S Wyfay

Substituting A, into equation (15) gives the heat power
required tomaintain the temperature gradient T;across
the slab:

Q(o(al —

koT, =7a

17

(k/ku)
(W/a)

1
| T R AT j-

The analogous heat power expression for one-
dimensional diffusion through composite media is well
known:

Qlolal
kyT;

_ na
1o (ko/k)(Wija)+(Wy/a)

In view of the foregoing multi-phased mathematical
development, it is corroborative to note here that
equation (18) reduces, as it properly should, to
equation (19)in alllegitimate cases of the geometricand
thermal parameters; i.e. specifically as Wy/a— 0, or
ky— o0, or ky—0, or when both W,/a—0 simul-
taneouslyas W, /a — 0.Inthelast of theselimiting cases,
S,(Wy/a) = 3(W/a), which follows from the summation

)
X B =1
n=1

Summation (20) converges very slowly, indeed.
Employing a PDP-11 FORTRAN algorithm, sums
obtained by including 1000, 2000, 3000 and 4000 terms
of the series are 0.24990, 0.24995, 0.24997 and 0.24997,
respectively.

Values of S,(Wy/a) were computed for 0 < W, /a
< 10 and are plotted in Fig. 3 and listed in Table 1 for
typical values of W, /a. It is noted that the derivation in
this work does not hold precisely when W /a = 0, e.g.
equation (7b).

(19)

(20)

08

D05 F

SN ST SN ST U E S TR S DA S S |

0 1
Wy / a
F1G. 3. The summation in equation (16b).
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Table 1. The summation in equation (16b)

; ’, ’
i Sf(.’ﬂ)
a a

0 0

0.1 0.02237
0.2 0.03984
03 0.05296
0.4 0.06241
0.5 0.06893
0.6 0.07326
0.7 0.07608
0.8 0.07788
0.9 0.07901

1 0.07972

2 0.08087

3 0.0808812
4 0.0808813
o 0.0808813

4. DISCUSSION AND A COMPARISON FOR THE TWO-
LAYER LAMINATED CYLINDRICAL SLAB

Equation (18) relates the equilibrium heat power to
both the thicknesses and thermal conductivities of the
laminated slabshownin Fig. 1. Figure 4,constructed on
the basis ofequation (18), showselevated heating power

Wy/fazs
v Wy /fas 1
Qyotal
nkyTja
WL/ a=4
¥
- N P bt L ' L [
0 0.5 1
kl_/ ky
FIG. 4(a). Non-dimensional heat power vs slab conductivity
ratio.
{ /‘Wu/a =5 3.627
’_ /- Wy/a=1 3.136
3
Qtotay
nkyT;a
2
W,_/ as 4
1k
. L P |
0 50 100
kL/ku

F1G. 4(b). Non-dimensional heat power vs slab conductivity
ratio.
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as the conductivity of the underslab increases. It is seen
from Fig. 4 that highly conductive underslabs providea
very substantive lateral bypass for the short-circuited
flow of heat energy.

To quantify the degree of the short circuit, the heat
power here is compared with the one-dimensional case
in which there cannot be a short-circuited pathway, i.e.
when the cylindrical surfaces in Fig. 1 are entirely
insulated. Thiscomparison,shownin Fig. 5,is obtained
by dividing equation (18) by equation (19):

Quan _ 1+l )
Qio L+ Ak (ol (W /]

Figure 5 shows that for a constant surface temperature
differential T;, the heat power drain ratio increases
sharply with underslab conductivity, and by a factor of
2 or 3 for the value of the parameters selected. The heat
powerdrainlevels off, however,above a critical range of
the slab conductivity ratio, k;/k,. Thus, the short-
circuiting effect is fully established above this range,
and further increases in underslab conductivity have no
appreciable effect.

Figure 5 also shows that lowered undersiab
conductivity, i.e. ky /ky « 1, will stem the drain of heat
power. In fact, as k; /ky — 0, the heat power in the case
having a short-circuit pathway is no larger than the
fully-insulated one-dimensional case. It may be
concluded, therefore, that an underslab of lowered
conductivity acts as a short-circuit plug.

(21)

2k /wu/a= 1
Qotal
Q1-p
1
A S |
o 0.5 1
ko / ky
F1G. 5(a). Ratio of short-circuited to non-short-circuited heat
power.
W, /az
y / v/a=1 136
.
L
Qtotal
Qi.p

W,/a=s
2 / o/ 1.813

s W /az=4

i i 1 a a " e 1

o 50 100
ki /ky

F1G. 5(b). Ratio of short-circuited to non-short-circuited heat
power.
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5. AN EXTREME CASE OF SHORT-CIRCUIT PHENOMENA

The semi-infinite strip, heated as shown in Fig. 6, has
been considered in the literature as early as the mid-
nineteenth century. It was in 1878 that Fourier’s
solution for the temperature distribution was
published, apparently to show an application of the
series that bears his name [2, pp. 131-155]. This same
problem, or the analogous finite rectangular slab, has
been historically presented thereafter in the literature
on heat conduction [3, pp. 164, 167; 4, pp. 115, 116;
5-7]. What has not been heretofore recognized, how-
ever, is the intrinsically short-circuit nature of these
problems. Indeed, the corner temperature dis-
continuities lead to infinite energy rates, as will be
proved subsequently.

Carslaw and Jaeger [3, p. 164] give a closed form
solution for the temperature field in the semi-infinite
strip (see Fig. 6):

T(x, y) = % arctan (sin (n/L)x ) (22)

sinh (n/L)y
Equation (22) allows an easy derivation of the heat
power. It is a straightforward matter, thereby, to write
the heat flux on the boundary y = 0:
2k 1

"~ Lsin¥(n/L)x’
Integration over the interval ¢ < (x/L) € 1—(g/L) on
the boundary y = 0 gives the heat power, Q(¢):

q(x) (23)

L—¢L 4
0@ = -[ q(x) dx = ;k cot (me). (24)

L

T *
N1

L

F1G. 6. Discontinuous temperature on the boundary of the
semi-infinite strip.
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40

30 1

Qf(e)

alh

€

Fi1G. 7. The heat power over the interval eL< x < (1—¢)Lon
the boundary of the semi-infinite strip.

Q(e) is shown in Fig. 7 for the physically meaningful
range 0 < ¢ <0.5. Clearly, the heat power grows
beyond all bounds as ¢ — 0.

It is obvious now that problems of this type are
extreme cases of the short-circuit phenomena; thus,
smoothing of the boundary discontinuities appears to
be in order. However, the extent of smoothing (i.e. the
value of ¢ in Fig. 8) cannot be inferred from Fig. 7, since
the curve does not asymptotically approach a positive
limit as ¢ increases. To resolve this dilemma, a method
for smoothing the boundary temperature discontinuity
ona physically meaningful basisis developed in Section
7.

6. SOLUTIONS FOR ARBITRARY SMOOTHING OF THE
BOUNDARY TEMPERATURE DISCONTINUITY

Consider the cylindrical slab shown in Fig. 8. In
accordance with the foregoing discussion, the
boundary temperature has been smoothed by a
parabolically-shaped taper. Note, however, that the
smoothing interval £a is as yet arbitrary. The value of ¢

| /—T=O
)

aiaa"‘—‘\—Ti —ijtar—

- 2a

FiG. 8. Smoothed temperature on the boundary of the
cylindrical slab.
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will bedetermined in Section 7. The governing diffusion
equation for the axisymmetric temperature field T(r, ),

under steady-state conditions in an isotropic solid, is:
#T 10T 8T
at-atez=0
or ror oz

for (25)

O<r<a, O<z<W,

Conditions imposed on the boundaries of the slab are:
T, for 0<-<l-z

T(r, 0) = T(r) = [1—()‘2/(12)] r

it for -2 1-—¢,

[1-(1-¢%] a

T(r, W) =0,

T(a, 2) =0,

(26)

bounded ?I O, 2).
or

As mentioned earlier in the analysis of the two-slab
case, solutions for the homogeneous conditions of
equations (26) are seen to have the following form,
where 3, are roots of the zero order Bessel function of
the first kind, J,:

T(r,2)= Y. C, sinh %"—(Wu—z) Jo(/},,£>. @n
n=1

To develop the solution for the temperature field, the

Fourier-Bessel series is obtained for the function T(r),

in the interval 0 < r <a, by integrating by parts the

usual formula for the coefficients, e.g. ref. [4, p. 163]:

4T, 2

0= - 2,
JoBn)—(1—=&)*J,[B(1-¢)] r
" IR a(n.5). e
The remaining non-homogeneous condition of

equations (26) will be satisfied if

c = 3T {J2(B) — (1 =e)* L[ B(1—2)]}
" -(1—9%1 BB sinh [B(Wo/a)]

Thus, itisastraightforward matter to write the solution
for the temperature field, and by employing Fourier’s
law of heat conduction, the heat flux g(r) on the
boundary z = 0:

4T; i Ja(Ba) = (1—¢)*J2[B.(1—2)]

T, 2) =
2 = (a7 % B173(5,) sinh (A /a)]
x sinh % (Wu—z)Jo([},, %) (30)
L akT & B0 IA -5
q(r) =

[1-(1—&a =y B.J(B,) tanh [B,(Wy/a)]
x Jo(ﬂ,,g). 31)
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Integrating equation (31), one obtains the following
heat power equation:

Qe) = J-a Jzn rq(r) dr d0
o Jo

_ a _ 8mkyTa
=2r L rq(r) dr = ————[1 (=97

& JoB)—(1—&)*J2[B,(1—2)]

X y 32

2\ 20,5, tanh 8,/ 42
where the known definite integral
a r a2
J —)dr=—

L r o(ﬂna> =gl 6

is employed to obtain equation (32). Note that the heat
power Q(e) increases beyond all bounds as ¢ — 0. The
singular nature of Q(¢) is shownin Fig. 9 for two selected
aspect ratios, specifically Wy/a =1 and 10. To this
point, however, itis noted that the value of ¢ is arbitrary
and, perhaps more significantly, the heat power is
indeterminate.

7. NATURAL SMOOTHING OF THE
BOUNDARY TEMPERATURE DISCONTINUITY

The purpose at hand here is not only to render the
heat power Q(g) determinate, but to do so on a
physically meaningful basis. Therefore, one seeks to
relate the smoothed boundary temperature of Fig. 8 to
asituation in which the slab undersurface is maintained
entirely at a constant temperature T;, but without a
corner temperature discontinuity. These requirements
are precisely fulfilled by a limiting case of the solution
developed earlier in this work, for the two-layer
laminated slab shown in Fig. 1, when the conductivity
of the lower slab increases beyond all bounds.

Perspective on the relevance of the aforementioned
limiting case (kp — o0) of the laminated slab may

Q(e)
Bnlﬁria

€
Fi1G. 9. The heat power for arbitrarily smoothed temperature
on the boundary of the cylindrical slab.
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perhaps be enhanced by considering the case of one-
dimensional steady heat flow through the underslab.
For this case, the relation between the heat flux g and
the thermal gradient (7;— Tp) across the underslab is
well known:

k W
=5 =Tl or To=T—7=q. (39

It may be observed from equations (34) that the
temperature field becomes uniform throughout the
underslab volume, ie. T, — T, for highly conductive
underslabs,ie. whenk; — o0.Oneconcludes, therefore,
that both the form and magnitude of the square-wave
boundary temperature T;, on the lower surface of the
underslab, is in this case transmitted undisturbed to the
upper surface. Thus, it may be argued that a
superconductive underslab will most evenly transmit
the constant form of the boundary temperature T;to the
interface of the composite cylindrical slab shown in
Fig. 1.

In accordance with the foregoing discussion, the
interface temperature of the laminated slab, when k.
—» 00, will be quite similar to the smoothed boundary
temperature shown in Fig, 8. It is noted in this limiting
case, that the interface temperature is smoothed
physically, hereafter called natural smoothing, by
diffusion of heat flowing through the superconductive
lower slab. Thus, by equating the heat power in each of
the cases just described, both the heat power Q(e)
[equation (32)] and the smoothing function ¢ are
rendered determinate. An exact solution for the heat
power required to sustain steady conduction through
composite slabs is given by equation (18). In the case
when the underslab conductivity is very large, i.c. when
ki /ky — o0, equation (18) reduces, after some mathe-
matical manipulation, to

nakun

1S, (Wela) %)

thlal =

Table 2. The smoothing taper &£ of the temperature
discontinuity on the boundary of the cylindrical slab

_% Percent
a e error*
0.05 0.01747 0.00081
0.10 0.03359 0.00014
0.15 0.04830 0.00150
0.20 0.06153 0.00004
0.30 0.08351 0.00014
0.40 0.09972 0.00014
0.50 0.11102 0.00024
0.60 0.11855 0.00038
0.70 0.12344 0.00020
0.80 0.12655 0.000025
1.0 0.12973 0.00015
1.5 0.13155 0.00057
2 0.13171 0.00010
10 0.131727 0.00013
50 0.131727 0.00013

* See equation (37).
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Inview of the preceding remarks, equation(35) fixes the
magnitude of the smoothed heat power. The smoothing
function ¢(}/a) can now be determined from the
following transcendental equation, obtained by
equating equations (32) and (35):

AW 1 ®
F(E’T> = —a—1.5
AN A EDRAVAGE
B2J (B, tanh [B(Wi/a)]

1
"~ 325,(W,/a)

A PDP-11 FORTRAN algorithm based on the secant
method [9,p. 71] was used to obtain the roots e(Wy/a) of
equation (36).

The errors, which are defined as follows and listed in
Table 2, indicate that the values of ¢ so obtained have
been computed to good engineering accuracy:

) (. %)
a

percent error = 32S’(T)
The smoothing function, g(W/a), is plotted in Fig. 10.
Values of the Bessel functions Jy, J;, and J, were
computed employing a FORTRAN algorithm based
onboth series and asymptotic representations, e.g. refs.
[17; 18, p. 139].

=0. (36)

x 100. (37)

8. SUMMARY AND CONCLUSIONS

Both infinite heat flux and infinite heating power
stem from a discontinuous boundary temperature on
contiguous surface regions of a body in thermal
equilibrium. This situation, although unrealistic only if
the discontinuity is not smoothed, is one of
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F1G. 10. Natural smoothing depends on the slab aspect ratio.
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considerable practical importance and therefore, is
resolved herein on a physical basis.

It may be argued in the case just described that
realistic smoothing of boundary temperature dis-
continuities should be based on a consideration of the
interaction of theenergy source with the heated body, in
view of the infinite energy rate which would otherwise
be a mathematical consequence. Precisely this
approach is taken herein. The single-layer slab with
discontinuous corner temperature is extended to a
limiting case of a two-layer laminated slab: the lower
slab may be considered as part of the energy source.

A natural smoothing function ¢ is obtained in this
mannert. Thereby, the dilemma of infinite energy rate is
resolved in the practical case when contiguous surface
regions of a cylindrical body in thermal equilibrium are
maintained at essentially constant but different
temperatures. The taper of the discontinuity so
obtained represents a lowerbound, because the
superconductive underslab employed most evenly
spreads the heat from the energy source to the slab
interface. Thus, the smoothing will be minimal and is
synonymous with the best approximation to a
boundary temperature of square-wave form that can be
realized under practical conditions.
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APPENDIX

It is a straightforward matter to relate the average
temperature on the upper slab boundary z = W, (see Fig. 2) to
a uniform heat flux g, imposed on the same boundary. The
form of the solution is given by equations (9). If ¢, is expanded
in a Fourier-Bessel series, thus

@ J o
qo=29 Y ——;[ﬁl((za))].

m=1
the following values of the coefficients B,, are obtained by a
term by term comparison of equations (A1) and (9b):

(A1)

_ 2q0a
kuBrd 1(B) cosh [B(W/a)]

The temperature on the boundary then follows by substituting
equation (A2) into equation (9a):

2 it h 34
U m=1 m

Ifequation (A3)isnowintegrated, thedesired relation between
average boundary temperature and heat flux g, is obtained:

a 2x
Tav = Lz J I rT(r, W) dr d6,
na® Jo Jo

_ 440 < tanh [B.(Wy/a)]
aky m=1 2J 1 (B

x IA rJo([},,,é) dr,
nh (ﬁm%q).

B, = (A2)

=4aqo 5 1 @

kU m=1 /}'3"

(A4)

PHENOMENE DE COURT-CIRCUIT: DRAINAGE DE L’ENERGIE THERMIQUE DANS DES
COUCHES CYLINDRIQUES COMPOSITES

Résumé—Une analyse théorique de la conduction thermique a travers des couches cylindriques est conduite

pour introduire le concept de phénoméne de court-circuit de la diffusion. On montre que dans le cas d’une

coque a deux couches, des drainages énergétiques sont des caractéristiques de ce phénoméne. Uncaslimite de

solution lorsque la conductivité de la couche la plus faible croit par rapport a ce qui I'entoure, est utilisé pour

résoudre le dilemne de la discontinuité des températures de coin dans le cas d’une bande semi-infinie o d’une

plaque finie. Une méthode pour adoucir les discontinuités de température est développée sur la base de
considérations physiques.
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KURZSCHLUSSERSCHEINUNGEN: WARMESTROMPFADE IN GESCHICHTETEN
ZYLINDRISCHEN WANDEN

Zusammenfassung—Es wird eine grundlegende theoretische Untersuchung der stationdren Warmestréomung
durch geschichtete zylindrische Winde durchgefiihrt und dabei das Konzept von KurzschluBerscheinungen
der Wirmeleitungeingefiihrt. Im Falle einer zweischichtigen Wand zeigt es sich, dal Strompfade mit erhohter
Energiedichte eine hervorspringende Eigenschaft solcher Erscheinungen sind. Eine Grenzbetrachtung der
hierbei entwickelten Losung, insbesondere fiir den Fall, daB die Leitfahigkeit der unteren Schicht Gber alle
Grenzen steigt, dient dazu, das alte Problem unstetiger Ecktemperaturen im Falle des halbunendlichen
beheizten Streifens oder der endlichen Wand zu 16sen. Eine Methode zur Glittung der Unstetigkeiten der
Temperatur auf einer sinnvollen physikalischen Grundlage wird in dieser Arbeit entwickelt.

SIBJIEHUSI KOPOTKOI'O 3AMBLIKAHHS. CTOKH TEIJIOBOH DHEPTHH B
KOMIMO3UTHBIX MATEPHUAJNIAX LHIWJIMHJIPUYECKOH ®OPMbI

AnnoTais—BeInoaHed TeopeTituecknii aHanH3 CTAUHOHAPHOTO TEMIIOBOrO MOTOKA HEPe3 KOMIO3MT-
Hble MaTepHasibl LHIMHADHYECKOiT OpMBI 1s HecnedoBaHHs SBICHHIT MEpeHOCAa NPH KOPOTKOM
3ambikaHmn. B caywae asyxcroiimoro marepuana noka3aHo, 4TO A4 TakMX sBIcHHIT XxapakTepe
6o:iee HuTeHCHBHBII cTOK 3Heprin. Ipeaensublil cyyaii nolyuennoro B paboTe pelenns, B ocobeH-
HOCTH NpH YBETHYEHHH TEMIONPOBOAHOCTH HILKHEro €108 10 OeCKOHeYHOCTH, HCMOIb3yeTca [LTA
paspeuicHis MAaBHO CYLUeCTBYIOuleii NpodieMbl O HATHYHHM Pa3pbIBOB TEMMepaTyp B YIJIOBBIX
ob1acTax HarpesaeMbiX noay6GeckoHedHoll MOJ0CKH HAN M1ACTHHBI KOHEYHBIX pa3mepos. Pazpabotau
¢du3iyeckit 000CHOBAHHBIIT METOA CrAakHBAHHA PA3PLIBOB HEMPEPLIBHOCTH TEMNEPATYP.





